Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(1): 50-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37368442

RESUMEN

Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians are phytobacteria that induce crown gall and leafy gall disease, respectively, resulting in undesirable growth abnormalities. When present in nurseries, plants infected by either bacterium are destroyed, resulting in substantial losses for growers, especially those producing plants valued for their ornamental attributes. There are many unanswered questions regarding pathogen transmission on tools used to take cuttings for propagation and whether products used for bacterial disease control are effective. We investigated the ability to transmit pathogenic A. tumefaciens and R. fascians on secateurs and the efficacy of registered control products against both bacteria in vitro and in vivo. Experimental plants used were Rosa × hybrida, Leucanthemum × superbum, and Chrysanthemum × grandiflorum for A. tumefaciens and Petunia × hybrida and Oenothera 'Siskiyou' with R. fascians. In separate experiments, we found secateurs could convey both bacteria in numbers sufficient to initiate disease in a host-dependent manner and that bacteria could be recovered from secateurs after a single cut through an infected stem. In in vivo assays, none of six products tested against A. tumefaciens prevented crown gall disease, although several products appeared promising in in vitro trials. Likewise, four compounds trialed against R. fascians failed to prevent disease. Sanitation and clean planting material remain the primary means of disease management.


Asunto(s)
Agrobacterium tumefaciens , Rhodococcus , Agrobacterium tumefaciens/genética , Tumores de Planta/microbiología , Rhodococcus/genética , Plantas/microbiología
2.
Phytopathology ; 113(6): 975-984, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36515656

RESUMEN

Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.


Asunto(s)
Enfermedades de las Plantas , Xanthomonas , Fitomejoramiento , Xanthomonas/fisiología , Secuenciación Completa del Genoma , Brotes de Enfermedades , Plantas/genética , Genoma Bacteriano/genética
3.
Annu Rev Phytopathol ; 59: 311-332, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34030448

RESUMEN

Diseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.


Asunto(s)
Genómica , Enfermedades de las Plantas , Epidemiología Molecular , Plantas
4.
Science ; 368(6495)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32499412

RESUMEN

The accelerated evolution and spread of pathogens are threats to host species. Agrobacteria require an oncogenic Ti or Ri plasmid to transfer genes into plants and cause disease. We developed a strategy to characterize virulence plasmids and applied it to analyze hundreds of strains collected between 1927 and 2017, on six continents and from more than 50 host species. In consideration of prior evidence for prolific recombination, it was surprising that oncogenic plasmids are descended from a few conserved lineages. Characterization of a hierarchy of features that promote or constrain plasticity allowed inference of the evolutionary history across the plasmid lineages. We uncovered epidemiological patterns that highlight the importance of plasmid transmission in pathogen diversification as well as in long-term persistence and the global spread of disease.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Evolución Molecular , Plásmidos Inductores de Tumor en Plantas/genética , Rhizobiaceae/genética , Rhizobiaceae/patogenicidad , Modelos Biológicos , Filogenia , Rhizobiaceae/clasificación , Virulencia
5.
mBio ; 9(4)2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154261

RESUMEN

Rathayibacter toxicus is a species of Gram-positive, corynetoxin-producing bacteria that causes annual ryegrass toxicity, a disease often fatal to grazing animals. A phylogenomic approach was employed to model the evolution of R. toxicus to explain the low genetic diversity observed among isolates collected during a 30-year period of sampling in three regions of Australia, gain insight into the taxonomy of Rathayibacter, and provide a framework for studying these bacteria. Analyses of a data set of more than 100 sequenced Rathayibacter genomes indicated that Rathayibacter forms nine species-level groups. R. toxicus is the most genetically distant, and evidence suggested that this species experienced a dramatic event in its evolution. Its genome is significantly reduced in size but is colinear to those of sister species. Moreover, R. toxicus has low intergroup genomic diversity and almost no intragroup genomic diversity between ecologically separated isolates. R. toxicus is the only species of the genus that encodes a clustered regularly interspaced short palindromic repeat (CRISPR) locus and that is known to host a bacteriophage parasite. The spacers, which represent a chronological history of infections, were characterized for information on past events. We propose a three-stage process that emphasizes the importance of the bacteriophage and CRISPR in the genome reduction and low genetic diversity of the R. toxicus species.IMPORTANCERathayibacter toxicus is a toxin-producing species found in Australia and is often fatal to grazing animals. The threat of introduction of the species into the United States led to its inclusion in the Federal Select Agent Program, which makes R. toxicus a highly regulated species. This work provides novel insights into the evolution of R. toxicusR. toxicus is the only species in the genus to have acquired a CRISPR adaptive immune system to protect against bacteriophages. Results suggest that coexistence with the bacteriophage NCPPB3778 led to the massive shrinkage of the R. toxicus genome, species divergence, and the maintenance of low genetic diversity in extant bacterial groups. This work contributes to an understanding of the evolution and ecology of an agriculturally important species of bacteria.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/genética , Armas Biológicas , Evolución Molecular , Variación Genética , Actinobacteria/aislamiento & purificación , Actinobacteria/virología , Enfermedades de los Animales/microbiología , Animales , Australia , Bacteriófagos/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Bacteriano , Genotipo
6.
Elife ; 72018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29737968

RESUMEN

Randall et al., 2018 and Vereecke, 2018 have raised concerns about a paper we published (Savory et al., 2017). Here, we respond to those concerns.


Asunto(s)
Manejo de la Enfermedad , Rhodococcus
8.
Elife ; 62017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231813

RESUMEN

Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.


Asunto(s)
Evolución Molecular , Pistacia/microbiología , Enfermedades de las Plantas/microbiología , Rhodococcus/genética , Rhodococcus/patogenicidad , Manejo de la Enfermedad , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Filogenia , Pistacia/crecimiento & desarrollo , Plásmidos , Rhodococcus/crecimiento & desarrollo , Virulencia
9.
Phytopathology ; 107(9): 1062-1068, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28569126

RESUMEN

Agrobacterium is a genus of soilborne gram-negative bacteria. Members carrying oncogenic plasmids can cause crown gall disease, which has significant economic costs, especially for the orchard and nursery industries. Early and rapid detection of pathogenic Agrobacterium spp. is key to the management of crown gall disease. To this end, we designed oligonucleotide primers and probes to target virD2 for use in a molecular diagnostic tool that relies on isothermal amplification and lateral-flow-based detection. The oligonucleotide tools were tested in the assay and evaluated for detection limit and specificity in detecting alleles of virD2. One set of primers that successfully amplified virD2 when used with an isothermal recombinase was selected. Both tested probes had detection limits in picogram amounts of DNA. Probe 1 could detect all tested pathogenic isolates that represented most of the diversity of virD2. Finally, the coupling of lateral-flow detection to the use of these oligonucleotide primers in isothermal amplification helped to reduce the onerousness of the process, and alleviated reliance on specialized tools necessary for molecular diagnostics. The assay is an advancement for the rapid molecular detection of pathogenic Agrobacterium spp.


Asunto(s)
Agrobacterium/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico , Agrobacterium/genética , ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Nicotiana/microbiología
10.
Front Plant Sci ; 5: 406, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237311

RESUMEN

The accurate diagnosis of diseases caused by pathogenic bacteria requires a stable species classification. Rhodococcus fascians is the only documented member of its ill-defined genus that is capable of causing disease on a wide range of agriculturally important plants. Comparisons of genome sequences generated from isolates of Rhodococcus associated with diseased plants revealed a level of genetic diversity consistent with them representing multiple species. To test this, we generated a tree based on more than 1700 homologous sequences from plant-associated isolates of Rhodococcus, and obtained support from additional approaches that measure and cluster based on genome similarities. Results were consistent in supporting the definition of new Rhodococcus species within clades containing phytopathogenic members. We also used the genome sequences, along with other rhodococcal genome sequences to construct a molecular phylogenetic tree as a framework for resolving the Rhodococcus genus. Results indicated that Rhodococcus has the potential for having 20 species and also confirmed a need to revisit the taxonomic groupings within Rhodococcus.

11.
PLoS One ; 9(7): e101996, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25010934

RESUMEN

Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus.


Asunto(s)
Sitios Genéticos/genética , Genómica , Plantas/microbiología , Rhodococcus/genética , Rhodococcus/patogenicidad , Análisis de Secuencia , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Evolución Molecular , Fusión Génica , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Isopenteniladenosina/metabolismo , Datos de Secuencia Molecular , Operón/genética , Plásmidos/genética , Polimorfismo Genético , Rhodococcus/metabolismo , Rhodococcus/fisiología
12.
Plant Dis ; 94(9): 1132-1136, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30743723

RESUMEN

Verbena 'Taylortown Red' plants showed virus-like mottling symptoms. Virus purifications disclosed the presence of elongated and spherical particles, evidence of mixed virus infections, whereas double-stranded RNA analysis revealed the presence of several bands absent in healthy plants. After shotgun cloning, three viruses were identified in 'Taylortown Red': Broad bean wilt virus-1, Coleus vein necrosis virus, and a previously undescribed potyvirus. Given the importance of verbena to the ornamental industry, we studied the viruses found in 'Taylortown Red' and, in this article, we present our findings on the new potyvirus, provisionally named Verbena virus Y (VVY). VVY belongs to the Potato virus Y subgroup in the genus Potyvirus, has solanaceous plants, including potato, as alternative hosts, and can be transmitted by a ubiquitous pest in the ornamental industry, the green peach aphid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...